| Course<br>Type | Course Code                | Name of Course       | L | T | P | Credit |
|----------------|----------------------------|----------------------|---|---|---|--------|
| DE             | NMCD510                    | GPU Computing        | 3 | 0 | 0 | 3      |
| Prerequisit    | e<br>C++/Python and the ba | sics of programming. |   |   |   |        |

## Course Objective

• Objective: Understand GPU Architecture, thread organization, Memory organization, Parallel programming with CUDA and OpenACC.

## **Learning Outcomes**

Upon successful completion of this course, students will:

- Skill of developing data-parallel programming for High Performance Computing (HPC)
- Optimize CUDA Application Programmes
- Can apply GPU computing in variuos Parallel patterns and Convolution Neural Networks

| Unit<br>No. | Topics to be Covered                                                                                                                                                                                                                                                                                                                                                                                   | Contact<br>Hours | Learning Outcome                                                                                                             |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------|
| 1           | GPU Architectures: Understanding Parallelism with GPU, device memories and data transfer, kernel functions.  Scalable parallel execution: CUDA Thread Organization. Mapping Threads to Multidimensional Data, synchronization and transparent scalability, Resource Assignment, Querying Device Properties. Thread Scheduling and Latency Tolerance                                                    |                  | To understand GPU and CUDA programming Architectures To understand thread organization, synchronization                      |
| 2           | Memory and data locality: Importance of Memory Access Efficiency, Matrix Multiplication, CUDA Memory Types, Strategy for Reducing Global Memory Traffic,Concepts of tiling, Boundary Checks, Memory as a Limiting Factor to Parallelism Performance considerations: Global Memory Bandwidth, Warps and SIMD Hardware, More on Memory Parallelism Dynamic Partitioning of Resources, Thread Granularity | 8                | To know the concept of Memories and their Importance as a Limiting Factor to Parallelism  To understand Performance concepts |

| 3 | Numerical considerations: Floating-Point Format, Representable Numbers, Special Bit Patterns and Precision, Arithmetic Accuracy and Rounding, Algorithm Considerations.  Streams and Multi GPU Solutions: Atomic Operations, Single Stream, Multiple Streams, GPU Work Scheduling, Zero-Copy Host Memory, Portable Pinned Memory                                          |    | To learn the basics of Floating-Point Format, Representable Numbers To understand the Arithmetic Accuracy and Rounding concepts To know the Streams and Multi GPU Solutions concepts |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | Parallel patterns: 1D, 2D Parallel and Tiled Convolutions, Convolution Neural Networks, Convolution Layer, Reduction of Convolution Layer to Matrix Multiplication, parallel histogram computation, Use of Atomic Operations, sparse matrix computation, merge sort                                                                                                       |    | To learn Parallel patterns and Convolution Neural Networks with CUDA implementation                                                                                                  |
| 5 | GPU computing with PyCUDA: PyCUDA Module, Matrix-Matrix Multiplication, Kernel Invocation with GPUArray, Evaluating elementwise expressions with PyCUDA, MapReduce Operation, GPU progaming with NumbaPro  Parallel programming with OpenACC: The OpenACC Execution Model, OpenACC Directive Format, Comparing OpenACC and CUDA, Interoperability with CUDA and Libraries | 9  | To learn Parallel Programming with PyCUDA and OpenACC                                                                                                                                |
|   | Total                                                                                                                                                                                                                                                                                                                                                                     | 42 |                                                                                                                                                                                      |

## **Text Books:**

- 1. David B. Kirk: Programming Massively Parallel Processors: A Hands-on Approac, Wen-mei W. Hwu, Elsevier, 2016
- 2. Jason Sanders: CUDA by Example: An Introduction to General-Purpose GPU Programming, Edward Kandrot, publisher Addison-Wesley Professional, 2010

## Reference Books:

- 1. John Cheng, Max Grossman, Ty McKercher: Professional CUDA C Programming, John Wiley & Sons, 2014
- 2. Dr. Brian Tuomanen: Hands-On GPU Programming with Python and CUDA: Explore high-performance parallel computing with CUDA, Packt Publishing Ltd, 2018